Fluidized bed combustion (FBC) has emerged as a viable alternative and has significant advantages over conventional firing system and offers multiple benefits – compact boiler design, fuel flexibility, higher combustion efficiency and reduced emission of noxious pollutants such as SOx and NOx. The fuels burnt in these boilers include coal, washery rejects, rice husk, bagasse & other agricultural wastes. The fluidized bed boilers have a wide capacity range- 0.5 T/hr to over 100 T/hr.
When an evenly distributed air or gas is passed upward through a finely divided bed of solid particles such as sand supported on a fine mesh, the particles are undisturbed at low velocity. As air velocity is gradually increased, a stage is reached when the individual particles are suspended in the air stream – the bed is called “fluidized”. With further increase in air velocity, there is bubble formation, vigorous turbulence, rapid mixing and formation of dense defined bed surface. The bed of solid particles exhibits the properties of a boiling liquid and assumes the appearance of a fluid – “bubbling fluidized bed”.
If sand particles in a fluidized state is heated to the ignition temperatures of coal, and coal is injected continuously into the bed, the coal will burn rapidly and bed attains a uniform temperature. The fluidized bed combustion (FBC) takes place at about 840 OC to 950 OC. Since this temperature is much below the ash fusion temperature, melting of ash and associated problems are avoided.
The lower combustion temperature is achieved because of high coefficient of heat transfer due to rapid mixing in the fluidized bed and effective extraction of heat from the bed through in-bed heat transfer tubes and walls of the bed. The gas velocity is maintained between minimum fluidisation velocity and particle entrainment velocity. This ensures stable operation of the bed and avoids particle entrainment in the gas stream.
|